These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and other meiotic crossover proteins. Author: Song A, Labella S, Korneeva NL, Keiper BD, Aamodt EJ, Zetka M, Rhoads RE. Journal: J Cell Sci; 2010 Jul 01; 123(Pt 13):2228-37. PubMed ID: 20530576. Abstract: Caenorhabditis elegans expresses five family members of the translation initiation factor eIF4E whose individual physiological roles are only partially understood. We report a specific role for IFE-2 in a conserved temperature-sensitive meiotic process. ife-2 deletion mutants have severe temperature-sensitive chromosome-segregation defects. Mutant germ cells contain the normal six bivalents at diakinesis at 20 degrees C but 12 univalents at 25 degrees C, indicating a defect in crossover formation. Analysis of chromosome pairing in ife-2 mutants at the permissive and restrictive temperatures reveals no defects. The presence of RAD-51-marked early recombination intermediates and 12 well condensed univalents indicate that IFE-2 is not essential for formation of meiotic double-strand breaks or their repair through homologous recombination but is required for crossover formation. However, RAD-51 foci in ife-2 mutants persist into inappropriately late stages of meiotic prophase at 25 degrees C, similar to mutants defective in MSH-4/HIM-14 and MSH-5, which stabilize a critical intermediate in crossover formation. In wild-type worms, mRNAs for msh-4/him-14 and msh-5 shift from free messenger ribonucleoproteins to polysomes at 25 degrees C but not in ife-2 mutants, suggesting that IFE-2 translationally upregulates synthesis of MSH-4/HIM-14 and MSH-5 at elevated temperatures to stabilize Holliday junctions. This is confirmed by an IFE-2-dependent increase in MSH-5 protein levels.[Abstract] [Full Text] [Related] [New Search]