These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship among pharmacokinetics and pharmacodynamics of fenretinide and plasma retinol reduction in neuroblastoma patients.
    Author: Formelli F, Cavadini E, Luksch R, Garaventa A, Appierto V, Persiani S.
    Journal: Cancer Chemother Pharmacol; 2010 Oct; 66(5):993-8. PubMed ID: 20532509.
    Abstract:
    PURPOSE: Fenretinide (4-HPR), a synthetic retinoid currently used in clinic for cancer therapy and prevention, markedly lowers plasma retinol levels, an effect associated with nyctalopia. Our aim was to investigate the relationship between 4-HPR pharmacokinetics, plasma retinol reduction and incidence of nyctalopia. PATIENTS AND METHODS: Children with neuroblastoma, participating in a phase I trial, were treated with oral 4-HPR, once a day for 28-day courses followed by a 7-day drug interruption, with escalating dose levels from 100 to 4,000 mg/m(2) per day. Blood samples were collected at baseline and up to 48 h after the 1st (50 patients) and 28th (41 patients) administration, and the plasma concentrations of 4-HPR and retinol were measured by HPLC. RESULTS: After the first administration, nadir retinol concentrations were reached at 16-20 h post-dosing; the extent of retinol reduction was related to 4-HPR dose and plasma concentrations as well as to pretreatment retinol concentrations. After repeated treatments, nadir retinol concentrations (10-20% of baseline values) were maintained during the 24 h dosing interval and were similar at all doses; the extent of retinol reduction was significantly (r = 0.97, P < 0.0001) related to pretreatment retinol concentrations. After a single dose, the relationship between 4-HPR pharmacokinetics and pharmacodynamics indicated a counterclockwise hysteresis suggesting the presence of an effect compartment. At steady state, the hysteresis collapsed suggesting that the 4-HPR concentrations in plasma and in the effect compartments were in equilibrium. Nyctalopia was not related to the administered dose, but was significantly associated (P = 0.05) with lower nadir retinol concentrations (0.11 +/- 0.012 vs. 0.17 +/- 0.015 microM). CONCLUSIONS: During 4-HPR chronic treatment, plasma retinol reduction is not proportional to the dose. Plasma retinol levels of 0.11 microM could be considered as a safety biomarker in children with neuroblastoma. Finally, since initial retinol levels strongly predict the extent of retinol reduction, retinol decrease could be used to monitor 4-HPR compliance.
    [Abstract] [Full Text] [Related] [New Search]