These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual effects of nobiletin, a citrus polymethoxy flavone, on catecholamine secretion in cultured bovine adrenal medullary cells.
    Author: Zhang H, Toyohira Y, Ueno S, Shinohara Y, Itoh H, Furuno Y, Yamakuni T, Tsutsui M, Takahashi K, Yanagihara N.
    Journal: J Neurochem; 2010 Aug; 114(4):1030-8. PubMed ID: 20533991.
    Abstract:
    Nobiletin, a compound of polymethoxy flavones found in citrus fruits, possesses a wide range of pharmacological activities. Here we report the effects of nobiletin on catecholamine secretion in cultured bovine adrenal medullary cells. Nobiletin (1.0-100 microM) concentration-dependently stimulated catecholamine secretion and (45)Ca(2+) influx. Its stimulatory effect of nobiletin on catecholamine secretion was abolished by deprivation of extracellular Ca(2+) and partially inhibited by specific inhibitors of voltage-dependent Ca(2+) channels and Na(+)/Ca(2+) exchangers. On the other hand, nobiletin suppressed catecholamine secretion and (22)Na(+) and (45)Ca(2+) influx induced by acetylcholine, an agonist of nicotinic acetylcholine receptors, in a concentration-dependent manner. It also inhibited catecholamine secretion, (22)Na(+) influx and/or (45)Ca(2+) influx induced by veratridine, an activator of voltage-dependent Na(+) channels, and 56 mM K(+), an activator of voltage-dependent Ca(2+) channels. In Xenopus oocytes expressing alpha3beta4 neuronal acetylcholine receptors, nobiletin directly inhibited the current evoked by acetylcholine in a concentration-dependent manner similar to that observed in catecholamine secretion. The present findings suggest that nobiletin, by itself, stimulates catecholamine secretion via activation of voltage-dependent Ca(2+) channels or Na(+)/Ca(2+) exchangers, whereas it inhibits catecholamine secretion induced by acetylcholine through the suppression of Na(+) influx and Ca(2+) influx in cultured bovine adrenal medullary cells.
    [Abstract] [Full Text] [Related] [New Search]