These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation.
    Author: Serafini B, Severa M, Columba-Cabezas S, Rosicarelli B, Veroni C, Chiappetta G, Magliozzi R, Reynolds R, Coccia EM, Aloisi F.
    Journal: J Neuropathol Exp Neurol; 2010 Jul; 69(7):677-93. PubMed ID: 20535037.
    Abstract:
    A cardinal feature of multiple sclerosis (MS) is the persistent intrathecal synthesis of antibodies. Our previous finding that a large fraction of B cells infiltrating the MS brain are infected with Epstein-Barr virus (EBV) raises the possibility that this virus, because of its ability to establish a latent infection in B cells and interfere with their differentiation, contributes to B-cell dysregulation in MS. The aim of this study was to gain further insight into EBV latency programs and their relationship to B-cell activation in the MS brain. Immunohistochemical analysis of postmortem MS brain samples harboring large EBV deposits revealed that most B cells in white matter lesions, meninges, and ectopic B-cell follicles are CD27+ antigen-experienced cells and coexpress latent membrane protein 1 and latent membrane protein 2A, 2 EBV-encoded proteins that provide survival and maturation signals to B cells. By combining laser-capture microdissection with preamplification reverse transcription-polymerase chain reaction techniques, EBV latency transcripts (latent membrane protein 2A, EBV nuclear antigen 1) were detected in all MS brain samples analyzed. We also found that B cell-activating factor of the tumor necrosis factor family is expressed in EBV-infected B cells in acute MS lesions and ectopic B-cell follicles. These findings support a role for EBV infection in B-cell activation in the MS brain and suggest that B cell-activating factor of the tumor necrosis factor family produced by EBV-infected B cells may contribute to this process resulting in viral persistence and, possibly, disruption of B-cell tolerance.
    [Abstract] [Full Text] [Related] [New Search]