These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Classification of raw and roasted Semen Cassiae samples with the use of Fourier transform infrared fingerprints and least squares support vector machines.
    Author: Lai Y, Ni Y, Kokot S.
    Journal: Appl Spectrosc; 2010 Jun; 64(6):649-56. PubMed ID: 20537233.
    Abstract:
    Raw and roasted Semen Cassiae seeds, a complex traditional Chinese medicine (TCM), are used as examples to research and develop a method of classification analysis based on measurements of Fourier transform infrared (FT-IR) spectral fingerprints. Eighty samples of the TCM were measured in the mid-infrared range, 400-2000 cm(-1) (KBr pellets), and the complex overlapping spectra were submitted for interpretation to a principal component analysis least squares support vector machine (PC-LS-SVM), kernel principal component analysis least squares support vector machine (KPC-LS-SVM), and radial basis function artificial neural networks (RBF-ANN). The LS-SVM models were developed with an RBF kernel function and a grid search technique. Training models were constructed with the use of raw and first-derivative spectra and these were then verified by another data set containing both raw and roasted spectral objects. It was demonstrated that the first-derivative data set produced the best separation of the spectral objects. In general, satisfactory analytical performance was obtained with the PC-LS-SVM, KPC-LS-SVM, and RBF-ANN training models and with the classification of the verification spectral objects. With regard to chemometrics modeling, the performance of KPC-LS-SVM was somewhat more economical than that of the PC-LS-SVM model. It would appear that the latter relatively simple model would be sufficient for application to most small to medium sized FT-IR fingerprint data sets, but with larger matrices the more complex models, such as the RBF-ANN and KPC-LS-SVM, may be more advantageous on a computational basis.
    [Abstract] [Full Text] [Related] [New Search]