These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced basal contractility but reduced excitation-contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity.
    Author: Tang M, Zhang X, Li Y, Guan Y, Ai X, Szeto C, Nakayama H, Zhang H, Ge S, Molkentin JD, Houser SR, Chen X.
    Journal: Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H519-28. PubMed ID: 20543081.
    Abstract:
    Cardiac remodeling during heart failure development induces a significant increase in the activity of the L-type Ca(2+) channel (Cav1.2). However, the effects of enhanced Cav1.2 activity on myocyte excitation-contraction (E-C) coupling, cardiac contractility, and its regulation by the beta-adrenergic system are not clear. To recapitulate the increased Cav1.2 activity, a double transgenic (DTG) mouse model overexpressing the Cavbeta2a subunit in a cardiac-specific and inducible manner was established. We studied cardiac (in vivo) and myocyte (in vitro) contractility at baseline and upon beta-adrenergic stimulation. E-C coupling efficiency was evaluated in isolated myocytes as well. The following results were found: 1) in DTG myocytes, L-type Ca(2+) current (I(Ca,L)) density, myocyte fractional shortening (FS), peak Ca(2+) transients, and sarcoplasmic reticulum (SR) Ca(2+) content (caffeine-induced Ca(2+) transient peak) were significantly increased (by 100.8%, 48.8%, 49.8%, and 46.8%, respectively); and 2) cardiac contractility evaluated with echocardiography [ejection fraction (EF) and (FS)] and invasive intra-left ventricular pressure (maximum dP/dt and -dP/dt) measurements were significantly greater in DTG mice than in control mice. However, 1) the cardiac contractility (EF, FS, dP/dt, and -dP/dt)-enhancing effect of the beta-adrenergic agonist isoproterenol (2 microg/g body wt ip) was significantly reduced in DTG mice, which could be attributed to the loss of beta-adrenergic stimulation on contraction, Ca(2+) transients, I(Ca,L), and SR Ca(2+) content in DTG myocytes; and 2) E-C couplng efficiency was significantly lower in DTG myocytes. In conclusion, increasing Cav1.2 activity by promoting its high-activity mode enhances cardiac contractility but decreases E-C coupling efficiency and the adrenergic reserve of the heart.
    [Abstract] [Full Text] [Related] [New Search]