These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Author: Skardal A, Zhang J, Prestwich GD. Journal: Biomaterials; 2010 Aug; 31(24):6173-81. PubMed ID: 20546891. Abstract: Bioprinting enables deposition of cells and biomaterials into spatial orientations and complexities that mirror physiologically relevant geometries. To facilitate the development of bioartificial vessel-like grafts, two four-armed polyethylene glycol (PEG) derivatives with different PEG chain lengths, TetraPEG8 and TetraPEG13, were synthesized from tetrahedral pentaerythritol derivatives. The TetraPEGs are unique multi-armed PEGs with a compact and symmetrical core. The TetraPEGs were converted to tetra-acrylate derivatives (TetraPAcs) which were used in turn to co-crosslink thiolated hyaluronic acid and gelatin derivatives into extrudable hydrogels for printing tissue constructs. First, the hydrogels produced by TetraPAc crosslinking showed significantly higher shear storage moduli when compared to PEG diacrylate (PEGDA)-crosslinked synthetic extracellular matrices (sECMs) of similar composition. These stiffer hydrogels have rheological properties more suited to bioprinting high-density cell suspensions. Second, TetraPAc-crosslinked sECMs were equivalent or superior to PEGDA-crosslinked gels in supporting cell growth and proliferation. Third, the TetraPac sECMs were employed in a proof-of-concept experiment by encapsulation of NIH 3T3 cells in sausage-like hydrogel macrofilaments. These macrofilaments were then printed into tubular tissue constructs by layer-by-layer deposition using the Fab@Home printing system. LIVE/DEAD viability/cytotoxicity-stained cross-sectional images showed the bioprinted cell structures to be viable in culture for up to 4 weeks with little evidence of cell death. Thus, biofabrication of cell suspensions in TetraPAc sECMs demonstrates the feasibility of building bioartificial blood vessel-like constructs for research and potentially clinical uses.[Abstract] [Full Text] [Related] [New Search]