These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction. Author: Schoch J, Wiessler M, Jäschke A. Journal: J Am Chem Soc; 2010 Jul 07; 132(26):8846-7. PubMed ID: 20550120. Abstract: There is currently a tremendous interest in developing bioorthogonal "click chemistry" methods for the modification of biopolymers. Very recently, inverse-electron-demand Diels-Alder reactions have received attention, but to date they have not been applied to nucleic acids. Here we describe the first example of DNA modification by inverse-electron-demand Diels-Alder reaction. We synthesized four different building blocks for 3'-terminal, 5'-terminal, and internal incorporation of norbornene dienophiles into oligonucleotides. These DNA strands were either directly reacted with suitably derivatized tetrazine dienes or first subjected to enzymatic manipulations. We demonstrate that the inverse-electron-demand Diels-Alder reaction allows efficient site-specific post-synthetic conjugation, often at a 1:1 stoichiometry, without any side reaction. The reaction works in aqueous media at room temperature, and no transition metals are required. Both short chemically synthesized oligonucleotides and long enzymatically amplified DNA strands were successfully conjugated.[Abstract] [Full Text] [Related] [New Search]