These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An indirect method for the characterization of locally reacting liners. Author: Taktak M, Ville JM, Haddar M, Gabard G, Foucart F. Journal: J Acoust Soc Am; 2010 Jun; 127(6):3548-59. PubMed ID: 20550255. Abstract: An indirect technique for educing the homogenized acoustic impedance of a liner mounted on the wall of a barrel is presented. It is based on measurements and computational simulations of the multimodal scattering matrix of this lined duct. Measurements are performed with a multisource method and the use of an anechoic duct termination. The numerical computation of the scattering matrix relies on a finite element model, and assume that the duct is axisymmetric and uniformly covered by a locally reacting material. The impedance is educed by minimizing the difference between the theoretical and experimental acoustic power dissipations, which are deduced from the scattering matrix. The source is an incoming pressure field generated at one end of the duct only and composed of all cut-on modes. This technique was tested on a cylindrical barrel whose wall was partially lined with a realistic, locally reacting material made of honeycomb cells and a perforated facing sheet. Results for the acoustic impedance are compared with those deduced from semiempirical models and the experimental two microphone method. The best agreement with the indirect method is found with the semiempirical impedance results when the difference between the acoustic power dissipated by the actual lined barrel and the reference barrel is chosen as the cost function of the minimizing procedure.[Abstract] [Full Text] [Related] [New Search]