These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calculation of interfacial properties via free-energy-based molecular simulation: The influence of system size.
    Author: Grzelak EM, Errington JR.
    Journal: J Chem Phys; 2010 Jun 14; 132(22):224702. PubMed ID: 20550411.
    Abstract:
    We examine several issues related to the calculation of interfacial properties via analysis of an interface potential obtained from grand canonical Monte Carlo simulation. Two model systems are examined. One includes a monatomic Lennard-Jones fluid that interacts with a structureless substrate via a long-ranged substrate potential. The second model contains a monatomic Lennard-Jones fluid that interacts with an atomistically detailed substrate via a short-ranged potential. Our results are presented within the context of locating the wetting point. Two methods are used to compute the wetting temperature. In both cases we examine the system size dependence of the key property used to deduce the wetting temperature as well as the robustness of the scaling relationship employed to describe the evolution of this property with temperature near the wetting point. In the first approach we identify the wetting transition as the point at which the prewetting and bulk saturation curves meet. In this case, the prewetting saturation chemical potential is the key quantity of interest. In the second approach we find the point at which the spreading coefficient evaluates to zero. We find that the effect of system size is adequately described by simple scaling functions. Moreover, estimates of the wetting temperature for finite-sized systems characterized by a linear dimension greater than 12 fluid diameters differ by less than 1% from an otherwise equivalent macroscopic system. Modification of the details regarding the use of simulation data to compute the wetting temperature can also produce a shift in this quantity of up to 1%. As part of this study, we also examine techniques for describing the shape of the interface potential at a relatively high surface density. This analysis is particularly relevant for systems with long-ranged substrate potentials for which the interface potential approaches a limiting value asymptotically.
    [Abstract] [Full Text] [Related] [New Search]