These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fluorescence spectral dynamics of single LHCII trimers. Author: Krüger TP, Novoderezhkin VI, Ilioaia C, van Grondelle R. Journal: Biophys J; 2010 Jun 16; 98(12):3093-101. PubMed ID: 20550923. Abstract: Single-molecule spectroscopy was employed to elucidate the fluorescence spectral heterogeneity and dynamics of individual, immobilized trimeric complexes of the main light-harvesting complex of plants in solution near room temperature. Rapid reversible spectral shifts between various emitting states, each of which was quasi-stable for seconds to tens of seconds, were observed for a fraction of the complexes. Most deviating states were characterized by the appearance of an additional, red-shifted emission band. Reversible shifts of up to 75 nm were detected. By combining modified Redfield theory with a disordered exciton model, fluorescence spectra with peaks between 670 nm and 705 nm could be explained by changes in the realization of the static disorder of the pigment-site energies. Spectral bands beyond this wavelength window suggest the presence of special protein conformations. We attribute the large red shifts to the mixing of an excitonic state with a charge-transfer state in two or more strongly coupled chlorophylls. Spectral bluing is explained by the formation of an energy trap before excitation energy equilibration is completed.[Abstract] [Full Text] [Related] [New Search]