These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Altered thyroid hormones and behavioural change in a sub-population of rats following chronic constriction injury.
    Author: Kilburn-Watt E, Banati RB, Keay KA.
    Journal: J Neuroendocrinol; 2010 Aug; 22(8):960-70. PubMed ID: 20553369.
    Abstract:
    Hypothyroidism is associated with a disturbance of behaviour and mood. There are also individuals, not classified as hypothyroid, with low to 'low normal' thyroid hormone levels and normal thyroid-stimulating hormone (TSH) levels who have mood and behavioural changes. As the peripheral thyroid hormones decrease, TSH is expected to increase. However, there are a number of physiological mechanisms known to suppress TSH. In the present study, we report on thyroid hormone regulation in a rat model of neuropathic pain and altered social behaviour that is usually transient, but is persistent in a sub-group of the population. Following ligation of the sciatic nerve, male Sprague-Dawley rats were assessed for social dominance towards an intruder: 20% showed persistently decreased social dominance. Plasma levels of thyroid hormones, TSH and corticosterone were measured before and on days 2, 3, 4, 5 and 6 after injury in 21 rats. The mean plasma thyroxine (T4), free thyroxine (fT4) and triiodothyronine (T3) levels decreased significantly post-injury in rats with persistently changed behaviour compared to rats with unchanged behaviour (P < or = 0.002). There was no significant difference between groups for mean change in free triiodothyronine (fT3) or TSH. There was a correlation between decreased dominance behaviour and decrease in both T4 (r = 0.62, P = 0.009) and fT4 (r = 0.71, P = 0.001), but no correlation with TSH. In a sub-population of rats, decreased thyroid hormones did not result in the expected increased levels of TSH to restore pre-injury levels, nor did they show increased hypothalamic thyrotrophin-releasing hormone mRNA expression, indicating altered hypothalamic-pituitary-thyroid axis regulation. Because T3 availability to the brain is dependent on both circulating T3 and T4, decreased peripheral thyroid hormones may result in changed neural function, as expressed in altered complex behaviours in this sub-population of rats.
    [Abstract] [Full Text] [Related] [New Search]