These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photophysical properties of a novel organic-inorganic hybrid material: Eu(III)-β-diketone complex covalently bonded to SiO(2) /ZnO composite matrix.
    Author: Li YJ, Yan B.
    Journal: Photochem Photobiol; 2010; 86(5):1008-15. PubMed ID: 20553415.
    Abstract:
    In this article, dibenzoylmethane (DBM) was first grafted with the coupling reagent 3-(triethoxysilyl)-propyl isocyanate (TESPIC) to form precursor DBM-Si, and ZnO quantum dot was modified with 3-mercaptopropyltrimethoxysilane (MPS) to form SiO(2) /ZnO nanocomposite particle. Then the precursor DBM-Si and the terminal ligand 1,10-phenthroline (phen) were coordinated to Eu(3+) ion to obtain ternary hybrid material phen-Eu-DBM-SiO(2) /ZnO after hydrolysis and copolycondensation between the tetraethoxysilane (TEOS), water molecules and the SiO(2) /ZnO network via the sol-gel process. In addition, for comparison, the binary hybrid material with SiO(2) /ZnO network and ternary hybrid material with pure Si-O network were also synthesized, denoted as Eu-DBM-SiO(2) /ZnO and phen-Eu-DBM-Si, respectively. The results reveal that hybrid material with SiO(2) /ZnO network phen-Eu-DBM-SiO(2) /ZnO exhibits the stronger red light, the longer lifetimes and higher quantum efficiency than hybrid material with pure Si-O network phen-Eu-DBM-Si, suggesting that SiO(2) /ZnO is a favorable host matrix for the luminescence of rare earth complexes.
    [Abstract] [Full Text] [Related] [New Search]