These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of source water quality on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus.
    Author: Kahler AM, Cromeans TL, Roberts JM, Hill VR.
    Journal: Appl Environ Microbiol; 2010 Aug; 76(15):5159-64. PubMed ID: 20562285.
    Abstract:
    More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15 degrees C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration x contact time (CT) values (mg x min/liter) required to achieve 2-, 3-, and 4-log(10) reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log(10) CT values at 5 degrees C ranging from < or = 0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log(10) CT values at 5 degrees C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15 degrees C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA's Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans.
    [Abstract] [Full Text] [Related] [New Search]