These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorescence imaging of homocysteine and cysteine in living cells based on a cationic iridium(III) complex. Author: Xiong L, Zhao Q, Chen H, Wu Y, Dong Z, Zhou Z, Li F. Journal: Inorg Chem; 2010 Jul 19; 49(14):6402-8. PubMed ID: 20565069. Abstract: Homocysteine (Hcy) and cysteine (Cys) are crucial to the physiological balance in living systems. Specific detection of intracellular Hcy and Cys is of growing importance. Herein, we demonstrated phosphorescence imaging of intracellular Hcy and Cys using a cationic iridium(III) complex Ir(pba)(2)(bpy)(+).PF(6)(-) [pba = 4-(2-pyridyl)benzaldehyde, bpy = bipyridine] containing aldehyde groups as a luminescent probe. Upon addition of Hcy or Cys to a semiaqueous solution of Ir(pba)(2)(bpy)(+), a change in luminescence from yellow to red was visible to the naked eye. The successful chemical reaction of the aldehyde in Ir(pba)(2)(bpy)(+) with Hcy and Cys to form thiazinane and thiazolidine was confirmed by (1)H NMR. Moreover, complexation with Hcy and Cys disturbed the p-pi conjugation between the aldehyde group and the bpy moiety, and led to the excited states switching to [dpi(Ir)-pi(N(wedge)N)*] (3)MLCT and [pi(C(wedge)N)-pi(N(wedge)N)*] (3)LLCT from (pi-pi*)(pba(-)) (3)IL. Furthermore, the MTT assay was used to determine that the probe has low cytotoxicity. Importantly, cell imaging experiments demonstrated that the probe is membrane permeable and can monitor the changes of Hcy/Cys within living cells in a ratiometric mode.[Abstract] [Full Text] [Related] [New Search]