These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Author: Wu S, Liao AP, Xia Y, Li YC, Li JD, Sartor RB, Sun J. Journal: Am J Pathol; 2010 Aug; 177(2):686-97. PubMed ID: 20566739. Abstract: Vitamin D receptor (VDR) plays an essential role in gastrointestinal inflammation. Most investigations have focused on the immune response; however, how bacteria regulate VDR and how VDR modulates the nuclear factor (NF)-kappaB pathway in intestinal epithelial cells remain unexplored. This study investigated the effects of VDR ablation on NF-kappaB activation in intestinal epithelia and the role of enteric bacteria on VDR expression. We found that VDR(-/-) mice exhibited a pro-inflammatory bias. After Salmonella infection, VDR(-/-) mice had increased bacterial burden and mortality. Serum interleukin-6 in noninfected VDR(+/+) mice was undetectable, but was easily detectable in VDR(-/-) mice. NF-kappaB p65 formed a complex with VDR in noninfected wild-type mouse intestine. In contrast, deletion of VDR abolished VDR/P65 binding. P65 nuclear translocation occurred in colonic epithelial cells of untreated VDR(-/-) mice. VDR deletion also elevated NF-kappaB activity in intestinal epithelia. VDR was localized to the surface epithelia of germ-free mice, but to crypt epithelial cells in conventionalized mice. VDR expression, distribution, transcriptional activity, and target genes were regulated by Salmonella stimulation, independent of 1,25-dihydroxyvitamin D3. Our study demonstrates that commensal and pathogenic bacteria directly regulate colonic epithelial VDR expression and location in vivo. VDR negatively regulates bacterial-induced intestinal NF-kappaB activation and attenuates response to infection. Therefore, VDR is an important contributor to intestinal homeostasis and host protection from bacterial invasion and infection.[Abstract] [Full Text] [Related] [New Search]