These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vibrational analysis of amino acids and short peptides in hydrated media. VII. Energy landscapes, energetic and geometrical features of L-histidine with protonated and neutral side chains. Author: Pflüger F, Hernández B, Ghomi M. Journal: J Phys Chem B; 2010 Jul 15; 114(27):9072-83. PubMed ID: 20568807. Abstract: In manuscript VI of the same series (J. Phys. Chem. B 2010, 114, 1077-1088), we reported the geometrical and vibrational features of lysine and arginine, that is, two alpha-amino acids (alpha-AAs) with positively charged side chains, at physiological conditions. Here, we report our results on histidine, one of the most biologically important alpha-AAs, whose side chain can be neutral or positively charged through a protonation-deprotonation process of the nitrogens involved in its cyclic side chain at pH values in the physiological range. We have recorded at room temperature Raman scattering and Fourier-transform infrared (FT-IR) absorption spectra from the aqueous solutions of the AA at pH values 4, 6.8, and 8. It has been shown that a Raman spectrum recorded at the intermediate pH (6.8) can be perfectly reconstituted by a linear combination of those observed at two extreme pH values (4 and 8), allowing determination of the populations of histidine with protonated and neutral side chains in solution. The above-mentioned experimental data were completed by the vibrational spectra recorded in D(2)O. On the other hand, quantum mechanical calculations at the DFT/B3LYP/6-31++G* allowed us to analyze the energetic, geometrical, and vibrational features of histidine. Through a discussion on the basis of experimental and theoretical results, we comment on (i) the potential energy surfaces of histidine placed in a polarizable dielectric continuum, providing molecular energy landscapes as a function of its side chain orientations around C(alpha)-C(beta) and C(beta)-C(gamma) bonds; (ii) the full geometry optimization of the low energy conformers placed in a solvent continuum or in the presence of n explicit water molecules (n = 3, 7); (iii) the energy value separating the two histidine forms with neutral side chains; (iv) the determination of the side chain pK(a) by means of Raman spectra; and (v) the assignment of the observed vibrational modes by means of the lowest-energy conformers of hydrated histidine.[Abstract] [Full Text] [Related] [New Search]