These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversible biological Birch reduction at an extremely low redox potential.
    Author: Kung JW, Baumann S, von Bergen M, Müller M, Hagedoorn PL, Hagen WR, Boll M.
    Journal: J Am Chem Soc; 2010 Jul 21; 132(28):9850-6. PubMed ID: 20578740.
    Abstract:
    The Birch reduction of aromatic rings to cyclohexadiene compounds is widely used in chemical synthesis and requires solvated electrons, the most potent reductants known in organic chemistry. Benzoyl-coenzyme A (CoA) reductases (BCR) are key enzymes in the anaerobic bacterial degradation of aromatic compounds and catalyze an analogous reaction under physiological conditions. Class I BCRs are FeS enzymes and couple the reductive dearomatization of benzoyl-CoA to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA) to a stoichiometric ATP hydrolysis. Here, we report on a tungsten-containing class II BCR from Geobacter metallireducens that catalyzed the fully reversible, ATP-independent dearomatization of benzoyl-CoA to dienoyl-CoA. BCR additionally catalyzed the disproportionation of dienoyl-CoA to benzoyl-CoA/monoenoyl-CoA and the four- and six-electron reduction of benzoyl-CoA in the presence of a reduced low-potential bridged 2,2'-bipyridyl redox dye. Reversible redox titration experiments in the presence of this redox dye revealed a midpoint potential of E(0)' = -622 mV for the benzoyl-CoA/dienoyl-CoA couple, which is far below the values of other known reversible substrate/product redox couples in enzymology. This work demonstrates the efficiency of reversible metalloenzyme catalysis, which in chemical synthesis can only be achieved under essentially irreversible conditions.
    [Abstract] [Full Text] [Related] [New Search]