These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bio-mitigation of CO(2), calcite formation and simultaneous biodiesel precursors production using Chlorella sp.
    Author: Fulke AB, Mudliar SN, Yadav R, Shekh A, Srinivasan N, Ramanan R, Krishnamurthi K, Devi SS, Chakrabarti T.
    Journal: Bioresour Technol; 2010 Nov; 101(21):8473-6. PubMed ID: 20580227.
    Abstract:
    In this study, an attempt was made to use micro-algal system for the production of biodiesel precursors and simultaneous CO(2) mitigation. Chlorella sp. was found to have a higher growth rate as compared to the other algal species tested namely Chlamydomonas sp. and Synnecococcus sp. At different CO(2) concentrations (0.03%, 3%, 10% and 15%), the lipid productivity was 23.0, 20.0 and 27.3mg/L/d respectively. Calcite produced was characterized using FT-IR, SEM and XRD. The FAME in crude biofuel was analyzed by GC-FID that found to contain palmitic acid (C16:0), docosapentaenoic acid (C22:5) and docosahexaenoic acid (C22:6). The calorific value of Chlorella sp. was found to be 29kJ/g which is higher than values reported for fresh water microalgae making it a potential candidate to be used as an alternate fuel.
    [Abstract] [Full Text] [Related] [New Search]