These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship between polysialylated neural cell adhesion molecule and beta-endorphin- or gonadotropin releasing hormone-containing neurons during activation of the gonadotrope axis in short daylength in the ewe. Author: Chalivoix S, Malpaux B, Dufourny L. Journal: Neuroscience; 2010 Sep 01; 169(3):1326-36. PubMed ID: 20580921. Abstract: Morphological plasticity has been demonstrated between breeding and anestrous seasons in the ewe hypothalamus, particularly for the gonadotropin-releasing hormone (GnRH) system. We sought to determine the impact of a photoperiodic transition, from long days (LD, 16 h light/24 h) to short days (SD; 8 h light/24 h), on the association between a marker of cerebral plasticity, the polysialylated form of neural cell adhesion molecule (PSA-NCAM), and two diencephalic populations: the GnRH and beta-endorphin (beta-END) neurons, the latter being potent inhibitors of GnRH neuronal activity. We also estimated the number of contacts on GnRH neurons after the passage to SD, using synaptophysin as a marker for synaptic buttons. Those parameters were evaluated in ovariectomized estradiol-replaced ewes using double immunocytochemistry and confocal microscopy at different times after the transition to SD: day 0 (D0), D30, D45, D60 and D112. Luteinizing hormone (LH) secretion was recorded throughout the experiment. High LH levels were observed only at D112. Significantly more PSA-NCAM was found in the GnRH neuron perimeters in the D112 group than in the other groups. This increase was not associated with any change in the number of synaptophysin-immunoreactive contacts on GnRH neurons. The beta-END peri-neuronal space was affected negatively by the transition to SD: the percentage of PSA-NCAM on beta-END neurons decreased between D45 and D112 in the posterior two thirds of the arcuate nucleus (ARC). These results suggest that photoperiod may reorganize cell interactions in different hypothalamic areas, ultimately reactivating GnRH neurons, in our model of ovariectomized-estradiol replaced ewes.[Abstract] [Full Text] [Related] [New Search]