These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developing nephrons in adolescent dogfish, Scyliorhinus caniculus (L.), with reference to ultrastructure of early stages, histogenesis of the renal countercurrent system, and nephron segmentation in marine elasmobranchs. Author: Hentschel H. Journal: Am J Anat; 1991 Apr; 190(4):309-33. PubMed ID: 2058567. Abstract: Light and electron microscopy of the excretory kidney of adolescent dogfish, Scyliorhinus caniculus (L.), revealed immature and mature nephrons as well as four developmental stages of nephrons. At stage I the nephron was characterized by a condensed mass of mesenchymal cells in the center of several concentric layers of connective tissue. At stage II of the nephron, the S-shaped body was an elongate cyst with a high prismatic epithelium that was connected by a developing collecting tubule with the collecting duct system. At stage III, the developing nephrons already possess the essential features of the mature nephron but lack complete differentiation. Developing renal corpuscles had one afferent arteriole and two efferent vessels. Developing tubules ran four times between the lateral bundle zone and the mesial tissue zone before they joined the collecting duct system. A continuous sheath of flat cells, encompassing the collecting duct system, extended around the developing lateral bundle. A rudimentary central vessel ran from the developing lateral bundle to the venous sinusoid capillaries between the mesial convolutions. Developmental stage IV was similar to the mature nephron, however, renal corpuscles and tubular segments were smaller than those of mature nephrons. Conclusive evidence for morphological homology of elasmobranch nephron segments and collecting tubule-collecting duct system with those of other vertebrates is provided. The origin and nature of the central vessel and the bundle sheath is clarified. These specific structures of marine elasmobranch kidney supposedly are of great functional relevance for the renal countercurrent system that in turn is essential for ion- and osmo-regulation.[Abstract] [Full Text] [Related] [New Search]