These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycan profiling of a defect in decorin glycosylation in equine systemic proteoglycan accumulation, a potential model of progeroid form of Ehlers-Danlos syndrome. Author: Kim B, Yoon JH, Zhang J, Eric Mueller PO, Halper J. Journal: Arch Biochem Biophys; 2010 Sep 15; 501(2):221-31. PubMed ID: 20599673. Abstract: Defects in glycosylation of decorin can result in systemic hereditary disease. A mutation in the galactosyl transferase I gene is the underlying defect of a progeroid form of Ehlers-Danlos syndrome. We have previously described pathological changes in equine systemic proteoglycan accumulation (ESPA, formerly degenerative suspensory ligament desmitis) as consisting of excessive presence of decorin and other proteoglycans in organs and structures with a high content of connective tissue. Using liquid chromatography/mass spectrometry, and one- and two-dimensional immunoblotting we have determined that decorin from ESPA-tendons had a higher molecular weight than decorin from non-affected control tendons. Glycosaminoglycan structure and monosaccharide composition were determined with HPLC analysis of chondroitinase ABC-digested glycosaminoglycans and gas chromatography/mass spectrometry. This analysis revealed an increase in the total content of sulfated disaccharides, particularly due to enhanced sulfation at 6-position of N-acetyl galactosamine (GalNAc) with a subsequent decrease in the ratio of 4-sulfation to 6-sulfation disaccharides in the ESPA decorin. The ESPA-affected decorin also exhibited altered biological activity resulting in (1) diminished binding of TGFbeta1 (and of anti-decorin antibody) to ESPA decorin, and (2) increased expression of TGFbeta1 in ESPA tissues.[Abstract] [Full Text] [Related] [New Search]