These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The hederagenin saponin SMG-1 is a natural FMLP receptor inhibitor that suppresses human neutrophil activation. Author: Hwang TL, Wang CC, Kuo YH, Huang HC, Wu YC, Kuo LM, Wu YH. Journal: Biochem Pharmacol; 2010 Oct 15; 80(8):1190-200. PubMed ID: 20599799. Abstract: The pericarp of Sapindus mukorossi Gaertn is traditionally used as an expectorant in Japan, China, and Taiwan. Activated neutrophils produce high concentrations of the superoxide anion (O(2)(-)) and elastase known to be involved in airway mucus hypersecretion. In the present study, the anti-inflammatory functions of hederagenin 3-O-(3,4-O-di-acetyl-alpha-L-arabinopyranoside)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (SMG-1), a saponin isolated from S. mukorossi, and its underlying mechanisms were investigated in human neutrophils. SMG-1 potently and concentration-dependently inhibited O(2)(*-) generation and elastase release in N-Formyl-Met-Leu-Phe (FMLP)-activated human neutrophils. Furthermore, SMG-1 reduced membrane-associated p47(phox) expression in FMLP-induced intact neutrophils, but did not alter subcellular NADPH oxidase activity in reconstituted systems. SMG-1 attenuated FMLP-induced increase of cytosolic calcium concentration and phosphorylation of p38 MAPK, ERK, JNK, and AKT. However, SMG-1 displayed no effect on cellular cAMP levels and activity of adenylate cyclase and phosphodiesterase. Significantly, receptor-binding analysis showed that SMG-1 inhibited FMLP binding to its receptor in a concentration-dependent manner. In contrast, neither phorbol myristate acetate-induced O(2)(*-) generation and MAPKs activation nor thapsigargin-caused calcium mobilization was altered by SMG-1. Taken together, our results demonstrate that SMG-1 is a natural inhibitor of the FMLP receptor, which may have the potential to be developed into a useful new therapeutic agent for treating neutrophilic inflammatory diseases.[Abstract] [Full Text] [Related] [New Search]