These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Decrease of internal free calcium and human sperm movement.
    Author: Serres C, Feneux D, Berthon B.
    Journal: Cell Motil Cytoskeleton; 1991; 18(3):228-40. PubMed ID: 2060032.
    Abstract:
    In order to elucidate the effects of calcium on the movement of human spermatozoa, studies were conducted using motile cells selected by swim-up migration at 37 degrees C in 5% CO2 in air in a synthetic BWW medium containing 1.7 x 10(-3) M CaCl2 or BWW without added calcium (BWW-Ca). Preliminary experiments have confirmed that the addition of EGTA (5 x 10(-3); 10(-2) M) to BWW medium decreased the intracellular calcium concentration ((Ca++)i) of spermatozoa, as measured in cells loaded with a fluorescent Ca++ indicator, Quin-2. Concomitant measurements of (Ca++)i and sperm movement (analysed by videomicrography at 200 f/s at room temperature) were carried out on Quin-2 loaded cells incubated in BWW-Ca medium plus EGTA (10(-5) M; 10(-4) M; 10(-3) M). Under these conditions a decrease in (Ca++)i was observed and associated with a decrease in mean amplitude of lateral head displacement (ALH). Analysis using an automatic analyser (Hamilton Thorn at 37 degrees C) confirmed these results: the percentage of spermatozoa swimming with ALH greater than or equal to 6 microns is decreased when the external free calcium in BWW-Ca is decreased by the addition of 10(-5) M, 10(-4) M, or 10(-3) M EGTA. Flagellar analysis of the sperm population characterized by ALH greater than or equal to 6 microns showed a large proximal curvature of the tail associated with a low propagation wave velocity and a low beat frequency as compared to the spermatozoa with ALH less than 6 microns with similar progressive velocities. These characteristics result in a high flagellar beat efficiency (in terms of head displacement per beat). The disappearance of this pattern of movement when intracellular calcium is lowered indicates that calcium plays a complex role in the relationship between curvature and wave propagation. The ability of spermatozoa to modulate their movement in response to an alteration in the intracellular calcium level confirms the role of calcium in controlling flagellar movement in intact cells.
    [Abstract] [Full Text] [Related] [New Search]