These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The induction of STAT1 gene by activating transcription factor 3 contributes to pancreatic beta-cell apoptosis and its dysfunction in streptozotocin-treated mice.
    Author: Kim JY, Song EH, Lee S, Lim JH, Choi JS, Koh IU, Song J, Kim WH.
    Journal: Cell Signal; 2010 Nov; 22(11):1669-80. PubMed ID: 20600850.
    Abstract:
    It is well established that the IFN-gamma/STAT1 pathway plays an important role in the pancreatic beta-cell apoptosis that is observed in STZ-induced type 1 diabetes; however, the upstream regulatory proteins involved have not been understood. Here, we investigated whether activating transcription factor 3 (ATF3) affects STAT1-mediated beta-cell dysfunction and apoptosis in streptozotocin-treated mice. To this, STZ (80 mg/kg, i.p.) was administered to wild-type and STAT1(-/-) or IFN-gamma(-/-) mice for 5 days and the mice were euthanized after 14 days. STZ-induced beta-cell dysfunction and apoptosis were associated with increased STAT1/IRF-1 and ATF3 expression and were correlated with elevated IFN-gamma levels. Genetic depletion using IFN-gamma(-/-) or STAT1(-/-) mice strongly inhibited the reduction of islet cell mass or insulin synthesis/secretion and the increase of beta-cell apoptosis observed in STZ-treated wild-type mice. ATF3 overexpression, especially the C-terminal domain, strongly enhanced beta-cell dysfunction and apoptosis by enhancing STAT1 activation and its accumulation, which were abolished with an ATF3-specific siRNA or C-terminal-deleted ATF3. The STZ induction of ATF3 was completely depleted in IFN-gamma(-/-) mice, but not in STAT1(-/-) mice. Furthermore, STAT1 did not affect ATF3 expression, but STAT1 depletion or its inactivation inhibited STZ-induced ATF3 nuclear translocation and beta-cell apoptosis. Interestingly, ATF3 also increased STAT1 transcription by directly binding to a putative binding region (-116 to -96 bp) in the STAT1 promoter. Our results suggest that ATF3 functions as a potent upstream regulator of STAT1 and ATF3 may play a role in STZ-induced beta-cell dysfunction by enhancing the steady state abundance of STAT1.
    [Abstract] [Full Text] [Related] [New Search]