These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation and function of potassium channels in aldosterone-sensitive distal nephron.
    Author: Wang WH, Yue P, Sun P, Lin DH.
    Journal: Curr Opin Nephrol Hypertens; 2010 Sep; 19(5):463-70. PubMed ID: 20601877.
    Abstract:
    PURPOSE OF REVIEW: K channels in the aldosterone-sensitive distal nephron (ASDN) participate in generating cell membrane potential and in mediating K secretion. The aim of the review is to provide an overview of the recent development regarding physiological function of the K channels and the novel factors which modulate the K channels of the ASDN. RECENT FINDINGS: Genetic studies and transgenic mouse models have revealed the physiological function of basolateral K channels including inwardly rectifying K channel (Kir) and Ca-activated big-conductance K channels in mediating salt transport in the ASDN. A recent study shows that intersectin is required for mediating with-no-lysine kinase (WNK)-induced endocytosis. Moreover, a clathrin adaptor, autosomal recessive hypercholesterolemia (ARH), and an aging-suppression protein, Klothe, have been shown to regulate the endocytosis of renal outer medullary potassium (ROMK) channel. Also, serum-glucocorticoids-induced kinase I (SGK1) reversed the inhibitory effect of WNK4 on ROMK through the phosphorylation of WNK4. However, Src-family protein tyrosine kinase (SFK) abolished the effect of SGK1 on WNK4 and restored the WNK4-induced inhibition of ROMK. SUMMARY: Basolateral K channels including big-conductance K channel and Kir4.1/5.1 play an important role in regulating Na and Mg transport in the ASDN. Apical K channels are not only responsible for mediating K excretion but they are also involved in regulating transepithelial Mg absorption. New factors and mechanisms by which hormones and dietary K intake regulate apical K secretory channels expand the current knowledge regarding renal K handling.
    [Abstract] [Full Text] [Related] [New Search]