These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Triggered infrared spectroscopy for investigating metalloprotein chemistry. Author: Vincent KA. Journal: Philos Trans A Math Phys Eng Sci; 2010 Aug 13; 368(1924):3713-31. PubMed ID: 20603378. Abstract: Recent developments in infrared (IR) spectroscopic time resolution, sensitivity and sample manipulation make this technique a powerful addition to the suite of complementary approaches for the study of time-resolved chemistry at metal centres within proteins. Application of IR spectroscopy to proteins has often targeted the amide bands as probes for gross structural change. This article focuses on the possibilities arising from recent IR technical developments for studies that monitor localized vibrational oscillators in proteins--native or exogenous ligands such as NO, CO, SCN(-) or CN(-), or genetically or chemically introduced probes with IR-active vibrations. These report on the electronic and coordination state of metals, the kinetics, intermediates and reaction pathways of ligand release, hydrogen-bonding interactions between the protein and IR probe, and the electrostatic character of sites in a protein. Metalloprotein reactions can be triggered by light/dark transitions, an electrochemical step, a change in solute composition or equilibration with a new gas atmosphere, and spectra can be obtained over a range of time domains as far as the sub-picosecond level. We can expect to see IR spectroscopy exploited, alongside other spectroscopies, and crystallography, to elucidate reactions of a wide range of metalloprotein chemistry with relevance to cell metabolism, health and energy catalysis.[Abstract] [Full Text] [Related] [New Search]