These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Author: Mason TJ, Cobley AJ, Graves JE, Morgan D. Journal: Ultrason Sonochem; 2011 Jan; 18(1):226-30. PubMed ID: 20605105. Abstract: Acoustic cavitation has been the subject of research and discussion for many years and it is the underlying driving force for sonochemistry. The collapse of acoustic cavitation bubbles in water near to a surface can bring about significant surface modification in terms of the mechanical damage caused by the asymmetric collapse of the bubbles which cause erosion and abrasion. A second effect of acoustic cavitation is the formation of short lived radicals caused by the breakdown of water inside the bubble. For the first time the dependence of these effects has been observed on the surface of a plastic material as a function of ultrasonic frequency.[Abstract] [Full Text] [Related] [New Search]