These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. Author: Zerfaoui M, Errami Y, Naura AS, Suzuki Y, Kim H, Ju J, Liu T, Hans CP, Kim JG, Abd Elmageed ZY, Koochekpour S, Catling A, Boulares AH. Journal: J Immunol; 2010 Aug 01; 185(3):1894-902. PubMed ID: 20610652. Abstract: The role of NF-kappaB in the expression of inflammatory genes and its participation in the overall inflammatory process of chronic diseases and acute tissue injury are well established. We and others have demonstrated a critical involvement of poly(ADP-ribose) polymerase (PARP)-1 during inflammation, in part, through its relationship with NF-kappaB. However, the mechanism by which PARP-1 affects NF-kappaB activation has been elusive. In this study, we show that PARP-1 inhibition by gene knockout, knockdown, or pharmacologic blockade prevented p65 NF-kappaB nuclear translocation in smooth muscle cells upon TLR4 stimulation, NF-kappaB DNA-binding activity, and subsequent inducible NO synthase and ICAM-1 expression. Such defects were reversed by reconstitution of PARP-1 expression. PARP-1 was dispensable for LPS-induced IkappaBalpha phosphorylation and subsequent degradation but was required for p65 NF-kappaB phosphorylation. A perinuclear p65 NF-kappaB localization in LPS-treated PARP-1(-/-) cells was associated with an export rather an import defect. Indeed, whereas PARP-1 deficiency did not alter expression of importin alpha3 and importin alpha4 and their cytosolic localization, the cytosolic levels of exportin (Crm)-1 were increased. Crm1 inhibition promoted p65 NF-kappaB nuclear accumulation as well as reversed LPS-induced p65 NF-kappaB phosphorylation and inducible NO synthase and ICAM-1 expression. Interestingly, p65 NF-kappaB poly(ADP-ribosyl)ation decreased its interaction with Crm1 in vitro. Pharmacologic inhibition of PARP-1 increased p65 NF-kappaB-Crm1 interaction in LPS-treated smooth muscle cells. These results suggest that p65 NF-kappaB poly(ADP-ribosyl)ation may be a critical determinant for the interaction with Crm1 and its nuclear retention upon TLR4 stimulation. These results provide novel insights into the mechanism by which PARP-1 promotes NF-kappaB nuclear retention, which ultimately can influence NF-kappaB-dependent gene regulation.[Abstract] [Full Text] [Related] [New Search]