These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxytocin and tumor necrosis factor alpha stimulate expression of prostaglandin E2 synthase and secretion of prostaglandin E2 by luminal epithelial cells of the porcine endometrium during early pregnancy.
    Author: Waclawik A, Blitek A, Ziecik AJ.
    Journal: Reproduction; 2010 Oct; 140(4):613-22. PubMed ID: 20616214.
    Abstract:
    Oxytocin (OXT) and tumor necrosis factor α (TNF) have been implicated in the control of luteolysis by stimulating endometrial secretion of luteolytic prostaglandin F(2α) (PGF(2α)). Nevertheless, OXT concentration in porcine uterine lumen increases markedly on days 11-12 of pregnancy, and TNF is expressed in endometrium during pregnancy. The objective of the study was to determine the effect of OXT and TNF on expression of the enzymes involved in PG synthesis: PG-endoperoxide synthase 2 (PTGS2), PGE(2) synthase (mPGES-1) and PGF synthase, and PGE(2) receptor (PTGER2), as well as on PG secretion by endometrial luminal epithelial cells (LECs) on days 11-12 of the estrous cycle and pregnancy. LECs isolated from gilts on days 11-12 of the estrous cycle (n=8) and pregnancy (n=7) were treated with OXT (100  nmol/l) and TNF (0.6  nmol/l) for 24  h. OXT increased PTGS2 mRNA and mPGES-1 protein contents, as well as PGE(2) secretion but only on days 11-12 of pregnancy. TNF stimulated PTGS2 and mPGES-1 mRNA, as well as mPGES-1 protein expression and PGE(2) release on days 11-12 of pregnancy and the estrous cycle. In addition, expressions of PTGER2 and PTGER4 were determined in corpus luteum (CL). Abundance of PTGER2 mRNA and PTGER4 protein in CL was upregulated on day 14 of pregnancy versus day 14 of the estrous cycle. This study indicates that TNF and OXT regulate PGE(2) synthesis in LECs during early pregnancy. PGE(2) secreted by LECs, after reaching ovaries, could have a luteoprotective effect through luteal PTGER2 and PTGER4, or may directly promote uterine function and conceptus development.
    [Abstract] [Full Text] [Related] [New Search]