These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Soil labile organic carbon contents and their allocation characteristics under different land uses at dry-hot valley].
    Author: Tang GY, Li K, Sun YY, Zhang CH.
    Journal: Huan Jing Ke Xue; 2010 May; 31(5):1365-71. PubMed ID: 20623878.
    Abstract:
    Soil organic carbon (SOC), readily oxidation organic carbon (ROC), microbial biomass carbon (MBC)and dissolved organic carbon (DOC) contents and their allocation ratios were comparatively investigated under Leucaena leucocephala woodland, Acacia auriculiformis woodland, dry cropland and wasteland in dry-hot valley. Results showed that SOC contents were not significant differences among the four land uses with the range of 4.22-5.19 g x kg(-1). ROC contents under L. leucocephala (2.14 g x kg(-1)) and A. auriculiformis woodland (2.03 g x kg(-1)) were both significantly higher than those under dry cropland (1.38 g x kg(-1)) and wasteland (1.34 g x kg(-1)). The highest MBC and DOC contents both presented under dry cropland among the four land uses, whereas the lowest occurred under wasteland. ROC allocation ratios under woodlands were 1.3 to 1.6 times to those under dry cropland and wasteland. MBC and DOC allocation ratios under cropland were higher than those under other three land uses, and the ratios were closely among woodlands and wasteland. Plant residue amounts and management were primarily determined ROC contents, and soil water content and plant residue quantity were mainly affected the variation of MBC and DOC contents under the four land uses. The change of ROC contents could sensitively indicate SOC dynamics in dry-hot valley, but the change of MBC or DOC could not.
    [Abstract] [Full Text] [Related] [New Search]