These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Localization and differential expression of the Krüppel-associated box zinc finger proteins 1 and 54 in early mouse development. Author: Albertsen M, Teperek M, Elholm G, Füchtbauer EM, Lykke-Hartmann K. Journal: DNA Cell Biol; 2010 Oct; 29(10):589-601. PubMed ID: 20624068. Abstract: Upon fertilization, the zygotic genome is activated. To ensure the transcription of specific genes and avoid promiscuous gene expression, a chromatin-mediated repressive state is established. To characterize potential heterochromatin factors present during the first cleavage, two putative transcriptional repressors, zinc finger protein (ZFP1) and ZFP54, belonging to the Krüppel-associated box (KRAB) zinc finger family, were isolated. ZFP1 and ZFP54 contain an N-terminally located KRAB repressor domain followed by 8 and 12 repeats of Krüppel zinc-finger motifs, respectively. Reverse transcription (RT) and quantitative (q) PCR show that maternally contributed Zfp1 and Zfp54 mRNA are detected throughout preimplantation development. α-Amanitin-treated zygotes revealed that maternal Zfp1 and Zfp54 are fully degraded at the two-cell stage. Microinjections of in vitro-transcribed mRNA encoding a gfp-fused reporter gene into zygotes demonstrated the intracellular distribution of ZFP1-green fluorescent protein (GFP) and ZFP54-GFP colocalized with a DNA marker in the two-cell embryo. The KRAB domain was essential to colocalize with DNA, and deletion of the KRAB domain in ZFP1-GFP and ZFP54-GFP localized in nucleoli and in a ubiquitously manner, respectively. Taken together, this suggests a role for ZFP1 and ZFP54 in transcriptional regulation in early development.[Abstract] [Full Text] [Related] [New Search]