These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thrombospondin-1 (TSP-1) in primary myelofibrosis (PMF) - a megakaryocyte-derived biomarker which largely discriminates PMF from essential thrombocythemia. Author: Muth M, Engelhardt BM, Kröger N, Hussein K, Schlué J, Büsche G, Kreipe HH, Bock O. Journal: Ann Hematol; 2011 Jan; 90(1):33-40. PubMed ID: 20625903. Abstract: Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm showing aberrant bone marrow remodeling with increased angiogenesis, progressive matrix accumulation, and fibrosis development. Thrombospondins (TSP) are factors sharing pro-fibrotic and anti-angiogenic properties, and have not been addressed in PMF before. We investigated the expression of TSP-1 and TSP-2 in PMF related to the stage of myelofibrosis (n = 51) and in individual follow-up biopsies by real-time PCR, immunohistochemistry, and confocal laser scanning microscopy (CLSM). TSP-1 was significantly overexpressed (p < 0.05) in all stages of PMF when compared to controls. Individual follow-up biopsies showed involvement of TSP-1 during progressive myelofibrosis. TSP-2 was barely detectable but 40% of cases with advanced myelofibrosis showed a strong expression. Megakaryocytes and interstitial proplatelet formations were shown to be the relevant source for TSP-1 in PMF. Stroma cells like endothelial cells and fibroblasts showed no TSP-1 labeling when double-immunofluorescence staining and CLSM were applied. Based on its dual function, TSP-1 in PMF is likely to be a mediator within a pro-fibrotic environment which discriminates from ET cases. On the other hand, TSP-1 is a factor acting (ineffectively) against exaggerated angiogenesis. Both features suggest TSP-1 to be a biomarker for monitoring a PMF-targeted therapy.[Abstract] [Full Text] [Related] [New Search]