These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association between uterine disease and indicators of neutrophil and systemic energy status in lactating Holstein cows.
    Author: Galvão KN, Flaminio MJ, Brittin SB, Sper R, Fraga M, Caixeta L, Ricci A, Guard CL, Butler WR, Gilbert RO.
    Journal: J Dairy Sci; 2010 Jul; 93(7):2926-37. PubMed ID: 20630210.
    Abstract:
    The objective of this study was to evaluate the association between uterine disease and indicators of neutrophil (PMN) and systemic energy status in dairy cows. Peripheral blood (120 mL) was collected weekly from 84 Holstein cows for PMN isolation and plasma collection from calving until 42 d in milk (DIM). The final analysis included 80 cows. Of those, 20 cows were classified as having metritis (fetid uterine discharge and fever), 15 as having subclinical endometritis (SCE; >or=10% PMN on uterine cytology), and 45 as healthy controls. Plasma haptoglobin concentration was increased only in cows that developed metritis. Neutrophil glycogen content was reduced in cows developing metritis compared with healthy cows on the day of calving and at 7 and 42 DIM. Cows with SCE had lower PMN glycogen content than healthy cows at 7, 28, and 42 DIM. Blood glucose was affected by disease status within parity. Primiparous metritis cows had greater blood glucose concentrations than healthy primiparous cows. Multiparous metritis cows tended to have lower blood glucose concentration than multiparous SCE cows. Cows that developed metritis and SCE had or tended to have greater NEFA and BHBA than healthy cows, mainly around calving. At calving, cows that developed metritis had higher plasma estradiol concentration than healthy cows and greater plasma cortisol than cows that had SCE. Plasma insulin was not affected. Plasma glucagon was increased for SCE cows. Cows that developed uterine disease experienced a greater degree of negative energy balance and had decreased lower intracellular PMN glycogen levels, which could be a major predisposing factor for disease because of decreased availability of oxidative fuels.
    [Abstract] [Full Text] [Related] [New Search]