These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of toll-like receptors 2 and 4 in subplacental trophoblasts from guinea pigs (Cavia porcellus) following infection with Campylobacter jejuni. Author: Burrough ER, DiVerde KD, Sahin O, Plummer PJ, Zhang Q, Yaeger MJ. Journal: Vet Pathol; 2011 Mar; 48(2):381-8. PubMed ID: 20634415. Abstract: Toll-like receptors 2 and 4 (TLR2 and TLR4) are well-characterized cell surface receptors that recognize specific pathogen-associated molecular patterns and play an important role in pathogen recognition and activation of the innate immune system. Variable expression of TLR2 and TLR4 has been described in trophoblasts from normal and diseased placentas; yet, there are limited data regarding trophoblast TLR expression in response to specific placental pathogens, and TLR expression in the guinea pig placenta has not been described. The guinea pig is an effective model for Campylobacter-induced abortion of small ruminants, and the authors have shown by immunohistochemistry that C jejuni localizes within syncytiotrophoblasts of the guinea pig subplacenta. The present study was designed to determine if the expression of either TLR2 or TLR4 would be affected in subplacental trophoblasts following infection with C jejuni. Immunohistochemistry for TLR2 and TLR4 was performed on placenta from guinea pigs that aborted following inoculation with C jejuni and from sham-inoculated controls. Quantitative assessment of TLR expression was performed, and mean immunoreactivity for TLR2 was significantly higher in subplacental trophoblasts from animals that aborted compared with uninfected controls (P = .0283), whereas TLR4 expression was not statistically different (P = .5909). These results suggest that abortion in guinea pigs following infection with C jejuni is associated with increased TLR2 expression in subplacental trophoblasts and may reveal a possible role for TLR2 in the pathogenesis of Campylobacter-induced abortion.[Abstract] [Full Text] [Related] [New Search]