These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Limb kinematics during locomotion in the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus.
    Author: Nyakatura JA, Petrovitch A, Fischer MS.
    Journal: Zoology (Jena); 2010 Aug; 113(4):221-34. PubMed ID: 20637572.
    Abstract:
    In order to gain insight into the function of the extant sloth locomotion and its evolution, we conducted a detailed videoradiographic analysis of two-toed sloth locomotion (Xenarthra: Choloepus didactylus). Both unrestrained as well as steady-state locomotion was analyzed. Spatio-temporal gait parameters, data on interlimb coordination, and limb kinematics are reported. Two-toed sloths displayed great variability in spatio-temporal gait parameters over the observed range of speeds. They increase speed by decreasing the durations of contact and swing phases, as well as by increasing step length. Gait utilization also varies with no strict gait sequence or interlimb timing evident in slow movements, but a tendency to employ diagonal sequence, diagonal couplet gaits in fast movements. In contrast, limb kinematics were highly conserved with respect to 'normal' pronograde locomotion. Limb element and joint angles at touch down and lift off, element and joint excursions, and contribution to body progression of individual elements are similar to those reported for non-cursorial mammals of small to medium size. Hands and feet are specialized to maintain firm connection to supports, and do not contribute to step length or progression. In so doing, the tarsometatarsus lost its role as an individual propulsive element during the evolution of suspensory locomotion. Conservative kinematic behavior of the remaining limb elements does not preclude that muscle recruitment and neuromuscular control for limb pro- and retraction are also conserved. The observed kinematic patterns of two-toed sloths improve our understanding of the convergent evolution of quadrupedal suspensory posture and locomotion in the two extant sloth lineages.
    [Abstract] [Full Text] [Related] [New Search]