These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of antioxidants by a novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) assay with post-column detection.
    Author: Celik SE, Ozyürek M, Güçlü K, Apak R.
    Journal: Anal Chim Acta; 2010 Jul 26; 674(1):79-88. PubMed ID: 20638503.
    Abstract:
    A novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) method was developed for the selective determination of polyphenols (flavonoids, simple phenolic and hydroxycinnamic acids) in complex plant matrices. The method combines chromatographic separation, constituent analysis, and post-column identification of antioxidants in plant extracts. The separation of polyphenols was performed on a C18 column using gradient elution with two different mobile phase solutions, i.e., MeOH and 0.2% o-phosphoric acid. The HPLC-separated antioxidant polyphenols in the extracts react with copper(II)-neocuproine (Cu(II)-Nc) reagent in a post-column reaction coil to form a derivative. The reagent is reduced by antioxidants to the copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The negative peaks of antioxidant constituents were monitored by measuring the increase in absorbance due to Cu(I)-Nc. The detection limits of polyphenols at 450 nm (in the range of 0.17-3.46 microM) after post-column derivatization were comparable to those at 280 nm UV detection without derivatization. The developed method was successfully applied to the identification of antioxidant compounds in crude extracts of Camellia sinensis, Origanum marjorana and Mentha. The method is rapid, inexpensive, versatile, non-laborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of antioxidant constituents of complex plant samples.
    [Abstract] [Full Text] [Related] [New Search]