These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. Author: Aranzana MJ, Abbassi el-K, Howad W, Arús P. Journal: BMC Genet; 2010 Jul 20; 11():69. PubMed ID: 20646280. Abstract: BACKGROUND: Peach [Prunus persica (L.) Batsch] is one of the most economically important fruit crops that, due to its genetic and biological characteristics (small genome size, taxonomic proximity to other important species and short juvenile period), has become a model plant in genomic studies of fruit trees. Our aim was an in-depth study of the extent, distribution and structure of peach genetic variation in North American and European commercial varieties as well as old Spanish varieties and several founders used in the early USA peach breeding programmes. For this we genotyped 224 peach cultivars using 50 SSRs evenly distributed along the 8 linkage groups of the Prunus reference map. RESULTS: Genetic distance analysis based on SSRs divided the peach cultivars in three main groups based mainly on their fruit characteristics: melting flesh peaches, melting flesh nectarines and non-melting varieties. Whereas non-melting flesh peaches had a higher number of alleles than melting peaches and nectarines, they were more homozygous. With some exceptions ('Admiral Dewey', 'Early Crawford' and 'Chinese Cling'), the founder US cultivars clustered together with the commercial melting peaches, indicating that their germplasm is well represented in modern cultivars. Population structure analysis showed a similar subdivision of the sample into subpopulations. Linkage disequilibrium (LD) analysis in three unstructured, or barely structured, subpopulations revealed a high level of LD conservation in peach extending up to 13-15 cM. CONCLUSIONS: Using a much larger set of SSRs, our results confirm previous observations on peach variability and population structure and provide additional tools for breeding and breeders' rights enforcement. SSR data are also used for the estimation of marker mutation rates and allow pedigree inferences, particularly with founder genotypes of the currently grown cultivars, which are useful to understand the evolution of peach as a crop. Results on LD conservation can be explained by the self-pollinating nature of peach cultivated germplasm and by a bottleneck that occurred at the beginning of modern breeding practices. High LD suggests that the development of whole-genome scanning approaches is suitable for genetic studies of agronomically important traits in peach.[Abstract] [Full Text] [Related] [New Search]