These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultraviolet-treated lipoproteins as a model system for the study of the biological effects of lipid peroxides on cultured cells. III. The protective effect of antioxidants (probucol, catechin, vitamin E) against the cytotoxicity of oxidized LDL occurs in two different ways.
    Author: Negre-Salvayre A, Alomar Y, Troly M, Salvayre R.
    Journal: Biochim Biophys Acta; 1991 Jun 05; 1096(4):291-300. PubMed ID: 2065102.
    Abstract:
    Comparison of the protective effect of three antioxidants (from three different chemical classes) against cell injury due to LDL oxidation, allowed us to clearly discriminate between two different lines of defence. The ultraviolet-induced lipid peroxidation of LDL was strongly inhibited by 10 mumol/l catechin and 25 mumol/l probucol, but only poorly by 100 mumol/l vitamin E. The ultraviolet-treated LDL protected by catechin or probucol (i.e. LDL irradiated by ultraviolet in the presence of effective concentrations of antioxidants inhibiting the lipid peroxidation) were much less 'cytotoxic' than unprotected ultraviolet-treated LDL. In contrast, LDL treated by ultraviolet in the presence of 100 mumol/l vitamin E were 'cytotoxic' similarly to unprotected LDL. The level of 'cytotoxicity' of LDL treated by ultraviolet in the presence of antioxidants (protected ultraviolet-treated LDL) was well correlated with their content in lipid peroxidation markers. Therefore these markers can be useful for predicting the 'cytotoxicity' of oxidized LDL and subsequently the protective effect of the tested antioxidants. The 'cytotoxicity' of unprotected ultraviolet-treated LDL (i.e. LDL irradiated by ultraviolet in the absence of exogenous antioxidant) can be effectively blocked by preincubation of the cells with antioxidants. Catechin (10 mumol/l) and vitamin E (100 mumol/l) are very effective cytoprotective agents, whereas probucol (up to 50 mumol/l) was completely ineffective under these experimental conditions. The cytoprotective effect of vitamin E was associated to a complete inhibition of the cellular TBARS formation induced by ultraviolet-treated LDL, whereas the cytoprotective effect of catechin was relatively independent on the TBARS inhibition. All these results showed that: (1) probucol (25 mumol/l) is very effective to prevent lipid peroxidation of LDL and their subsequent 'cytotoxicity', but it cannot protect cells against the 'cytotoxicity' of previously oxidized LDL; (2) vitamin E (100 mumol/l) prevents poorly the ultraviolet-induced lipid peroxidation of LDL, but is able to block simultaneously the cellular oxidative stress and the 'cytotoxicity' induced by previously oxidized LDL; and (3) catechin (10 mumol/l) exhibited two types of protective effects: it inhibits the lipid peroxidation of LDL (and their subsequent 'cytotoxicity') and very effectively protects the cells against 'toxicity' of previously oxidized LDL (with only little inhibition of the cellular oxidative stress).(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]