These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel approach for the improvement of ethanol fermentation by Saccharomyces cerevisiae.
    Author: Hou L, Cao X, Wang C.
    Journal: Can J Microbiol; 2010 Jun; 56(6):495-500. PubMed ID: 20657620.
    Abstract:
    Fermentation properties under the control of multiple genes are difficult to alter with traditional methods in Saccharomyces cerevisiae. Here, a novel genome engineering approach is developed to improve ethanol production in very high gravity fermentation with 300 g/L glucose as the carbon source. This strategy involved constructing aneuploid strains on the base of tetraploid cells. The tetraploid strain was constructed by using the plasmid YCplac33-GHK, which harbored the HO gene encoding the site-specific Ho endonucleases. The aneuploid strain, WT4-M, was selected and screened after the tetraploid cells were treated with methyl benzimidazole-2-yl-carbamate to induce loss of mitotic chromosomes. It was found that aneuploid strain WT4-M not only exhibited an increase in ethanol production and osmotic and thermal tolerance, but also an improvement in the sugar-ethanol conversion rate. Notably, WT4-M provided up to 9.8% improvement in ethanol production compared with the control strain. The results demonstrated that the strategy of aneuploidy was valuable for creating yeast strains with better fermentation characteristics.
    [Abstract] [Full Text] [Related] [New Search]