These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The C-terminal domain of FUSCA3 negatively regulates mRNA and protein levels, and mediates sensitivity to the hormones abscisic acid and gibberellic acid in Arabidopsis.
    Author: Lu QS, Paz JD, Pathmanathan A, Chiu RS, Tsai AY, Gazzarrini S.
    Journal: Plant J; 2010 Oct; 64(1):100-13. PubMed ID: 20663088.
    Abstract:
    The transcription factor FUSCA3 (FUS3) controls the transition from the embryonic to the vegetative phase of development by regulating abscisic acid (ABA) and gibberellic acid (GA) levels in Arabidopsis thaliana. In a feedback loop, FUS3 accumulation is negatively and positively regulated by GA and ABA, respectively, by an uncharacterized mechanism. Here, we use a FUS3-GFP construct to show that the level of the FUS3 protein decreases dramatically during mid to late embryogenesis, whereas its mRNA is present at a high level. Deletion studies identify a C-terminal domain (CTD) that negatively regulates mRNA and protein levels, and mediates sensitivity to ABA and GA. Indeed, a CTD-truncated FUS3 variant accumulates at high level, and is insensitive to the destabilizing and stabilizing effects of GA and ABA, respectively. In contrast, fusion of various fragments of the CTD with GFP is sufficient to greatly reduce GFP fluorescence. The GFP-CTD fluorescence can be increased by ABA and paclobutrazol, an inhibitor of GA biosynthesis. Cell-free degradation assays show that FUS3 is a short-lived protein. FUS3 degradation follows the 26S proteasome in vitro and in vivo, and the CTD affects its degradation rate. In contrast to the native form, the CTD-truncated FUS3 is unable to fully rescue the fus3-3 mutant, and is thus required for FUS3 function. In conclusion, this study identifies a CTD that maintains low levels of FUS3 during embryogenesis and early germination, and is required for normal FUS3 function and sensitivity to ABA and GA.
    [Abstract] [Full Text] [Related] [New Search]