These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Real-time qRT-PCR analysis of EGF receptor in cumulus-oocyte complexes recovered by laparoscopy in hormonally treated goats. Author: Almeida KC, Pereira AF, Alcântara Neto AS, Avelar SR, Bertolini LR, Bertolini M, Freitas VJ, Melo LM. Journal: Zygote; 2011 May; 19(2):127-36. PubMed ID: 20663235. Abstract: Ovarian stimulation with exogenous follicle stimulating hormone (FSH) has been used to increase the number of viable oocytes for laparoscopic oocyte recovery (LOR) in goats. The aim of this study was to evaluate the effect of two FSH protocols for ovarian stimulation in goats on the expression pattern of epidermal growth factor (EGF) receptor (EGFR) in cumulus-oocyte complexes (COCs) recovered by LOR. After real-time qRT-PCR analysis, expression profiles of morphologically graded COCs were compared prior to and after in vitro maturation (IVM) on a FSH protocol basis. The use of a protocol with higher number of FSH injections at a shorter interval resulted in GI/GII COCs with a higher level of EGFR expression in cumulus cells, but not in the oocyte, which was correlated with an elevated meiotic competence following IVM. Based on the maturation profile and EGFR expression patterns observed between groups, the morphological selection of COCs prior to IVM was not a good predictor of oocyte meiotic competence. Therefore, EGFR may be a good candidate marker for indirect prediction of goat oocyte quality. The IVM process of goat COCs increased the EGFR expression in oocytes and cumulus cells, which seemed to be strongly associated with the resumption of meiosis. In summary, differential EGFR expression in goat cumulus cells was associated with the in vivo prematuration process, and in turn, the upregulation in the entire COC was associated with IVM. Cause-and-effect relationships between such increased expression levels, particularly in the oocyte, and oocyte competence itself still need to be further investigated.[Abstract] [Full Text] [Related] [New Search]