These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into the nitric oxide reductase mechanism of flavodiiron proteins from a flavin-free enzyme. Author: Hayashi T, Caranto JD, Wampler DA, Kurtz DM, Moënne-Loccoz P. Journal: Biochemistry; 2010 Aug 24; 49(33):7040-9. PubMed ID: 20669924. Abstract: Flavodiiron proteins (FDPs) catalyze reductive scavenging of dioxygen and nitric oxide in air-sensitive microorganisms. FDPs contain a distinctive non-heme diiron/flavin mononucleotide (FMN) active site. Alternative mechanisms for the nitric oxide reductase (NOR) activity consisting of either protonation of a diiron-bridging hyponitrite or "super-reduction" of a diferrous-dinitrosyl by the proximal FMNH(2) in the rate-determining step have been proposed. To test these alternative mechanisms, we examined a deflavinated FDP (deflavo-FDP) from Thermotoga maritima. The deflavo-FDP retains an intact diiron site but does not exhibit multiturnover NOR or O(2) reductase (O(2)R) activity. Reactions of the reduced (diferrous) deflavo-FDP with nitric oxide were examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. Anaerobic addition of nitric oxide up to one NO per diferrous deflavo-FDP results in formation of a diiron-mononitrosyl complex characterized by a broad S = (1)/(2 )EPR signal arising from antiferromagnetic coupling of an S = (3)/(2) {FeNO}(7) with an S = 2 Fe(II). Further addition of NO results in two reaction pathways, one of which produces N(2)O and the diferric site and the other of which produces a stable diiron-dinitrosyl complex. Both NO-treated and as-isolated deflavo-FDPs regain full NOR and O(2)R activities upon simple addition of FMN. The production of N(2)O upon addition of NO to the mononitrosyl deflavo-FDP supports the hyponitrite mechanism, but the concomitant formation of a stable diiron-dinitrosyl complex in the deflavo-FDP is consistent with a super-reduction pathway in the flavinated enzyme. We conclude that a diiron-mononitrosyl complex is an intermediate in the NOR catalytic cycle of FDPs.[Abstract] [Full Text] [Related] [New Search]