These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells. Author: Bonneau L, Gerbeau-Pissot P, Thomas D, Der C, Lherminier J, Bourque S, Roche Y, Simon-Plas F. Journal: Biochim Biophys Acta; 2010 Nov; 1798(11):2150-9. PubMed ID: 20674542. Abstract: The effects of changes in plasma membrane (PM) sterol lateral organization and availability on the control of signaling pathways have been reported in various animal systems, but rarely assessed in plant cells. In the present study, the pentaene macrolide antibiotic filipin III, commonly used in animal systems as a sterol sequestrating agent, was applied to tobacco cells. We show that filipin can be used at a non-lethal concentration that still allows an homogeneous labeling of the plasma membrane and the formation of filipin-sterol complexes at the ultrastructural level. This filipin concentration triggers a rapid and transient NADPH oxidase-dependent production of reactive oxygen species, together with an increase in both medium alkalinization and conductivity. Pharmacological inhibition studies suggest that these signaling events may be regulated by phosphorylations and free calcium. By conducting FRAP experiments using the di-4-ANEPPDHQ probe and spectrofluorimetry using the Laurdan probe, we provide evidence for a filipin-induced increase in PM viscosity that is also regulated by phosphorylations. We conclude that filipin triggers ligand-independent signaling responses in plant cells. The present findings strongly suggest that changes in PM sterol availability could act as a sensor of the modifications of cell environment in plants leading to adaptive cell responses through regulated signaling processes.[Abstract] [Full Text] [Related] [New Search]