These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tarsal taste neuron activity and proboscis extension reflex in response to sugars and amino acids in Helicoverpa armigera (Hubner). Author: Zhang YF, van Loon JJ, Wang CZ. Journal: J Exp Biol; 2010 Aug 15; 213(Pt 16):2889-95. PubMed ID: 20675558. Abstract: In adult female Helicoverpa armigera (Hübner), the fifth tarsomere of the prothoracic legs bears 14 gustatory trichoid chemosensilla. These chemosensilla were characterized through electrophysiological experiments by stimulating with sucrose, glucose, fructose, maltose, myo-inositol and 20 common amino acids. In electrophysiological recordings from nine sensilla, responses were obtained to certain compounds tested at 100 mmol l(-1), and the response spectra differed from broad to narrow. The four sugars excited the same receptor neuron in sensillum a and sensillum b; sucrose and myo-inositol, sucrose and lysine, myo-inositol and lysine excited two different receptor neurons respectively in sensillum a; fructose and lysine excited two different receptor neurons in sensillum n. Furthermore, the four sugars, myo-inositol and lysine all elicited concentration-dependent electrophysiological responses. These six compounds also induced the proboscis extension reflex (PER) followed by ingestion of the solution when they were applied on the tarsi. Lysine and sucrose caused the strongest electrophysiological responses. However, sucrose had the strongest stimulatory effect on the PER whereas lysine had the weakest. Mixtures of sucrose with the other sugars or with lysine had a similar stimulatory effect on the PER as sucrose alone. The electrophysiological and behavioural responses caused by a range of sucrose concentrations were positively correlated. We conclude that the tarsal gustatory sensilla play an essential role in perceiving sugars available in floral nectar and provide chemosensory information determining feeding behaviour. Tarsal taste-receptor-neuron responses to lysine are implicated in oviposition behaviour.[Abstract] [Full Text] [Related] [New Search]