These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Performance and physiological responses to repeated-sprint and jump sequences.
    Author: Buchheit M.
    Journal: Eur J Appl Physiol; 2010 Nov; 110(5):1007-18. PubMed ID: 20676896.
    Abstract:
    In this study, the performance and selected physiological responses to team-sport specific repeated-sprint and jump sequence were investigated. On four occasions, 13 team-sport players (22 ± 3 year) performed alternatively six repeated maximal straight-line or shuttle-sprints interspersed with a jump ([RS(+j), 6 × 25 m] or [RSS(+j), 6 × (2 × 12.5 m)]) or not ([RS, 6 × 25 m] or [RSS, 6 × (2 × 12.5 m)]) within each recovery period. Mean running time, rate of perceived exertion (RPE), pulmonary oxygen uptake (V(O)₂), blood lactate ([La](b)), and vastus lateralis deoxygenation ([HHb]) were obtained for each condition. Mean sprint times were greater for RS(+j) versus RS (4.14 ± 0.17 vs. 4.09 ± 0.16 s, with the qualitative analysis revealing a 82% chance of RS(+j) times to be greater than RS) and for RSS(+j) versus RSS (5.43 ± 0.18 vs. 5.29 ± 0.17 s; 99% chance of RSS(+j) to be >RSS). The correlation between sprint and jump abilities were large-to-very-large, but below 0.71 for RSSs. Jumps increased RPE (Cohen's d ± 90% CL: +0.7 ± 0.5; 95% chance for RS(+j) > RS and +0.7 ± 0.5; 96% for RSS(+j) > RSS), V(O)₂(+0.4 ± 0.5; 80% for RS(+j) > RS and +0.5 ± 0.5; 86% for RSS(+j) > RSS), [La](b) (+0.5 ± 0.5; 59% for RS(+j) > RS and +0.2 ± 0.5; unclear for RSS(+j) > RSS), and [HHb] (+0.5 ± 0.5; 86% for RS(+j) > RS and +0.5 ± 0.5; 85% for RSS(+j) > RSS). To conclude, repeated- sprint and jump abilities could be considered as specific qualities. The addition of a jump within the recovery periods during repeated-sprint running sequences impairs sprinting performance and might be an effective training practice for eliciting both greater systemic and vastus lateralis physiological loads.
    [Abstract] [Full Text] [Related] [New Search]