These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Flywheel resistance training calls for greater eccentric muscle activation than weight training. Author: Norrbrand L, Pozzo M, Tesch PA. Journal: Eur J Appl Physiol; 2010 Nov; 110(5):997-1005. PubMed ID: 20676897. Abstract: Changes in muscle activation and performance were studied in healthy men in response to 5 weeks of resistance training with or without "eccentric overload". Subjects, assigned to either weight stack (grp WS; n = 8) or iso-inertial "eccentric overload" flywheel (grp FW; n = 9) knee extensor resistance training, completed 12 sessions of four sets of seven concentric-eccentric actions. Pre- and post-measurements comprised maximal voluntary contraction (MVC), rate of force development (RFD) and training mode-specific force. Root mean square electromyographic (EMG(RMS)) activity of mm. vastus lateralis and medialis was assessed during MVC and used to normalize EMG(RMS) for training mode-specific concentric (EMG(CON)) and eccentric (EMG(ECC)) actions at 90°, 120° and 150° knee joint angles. Grp FW showed greater (p < 0.05) overall normalized angle-specific EMG(ECC) of vastii muscles compared with grp WS. Grp FW showed near maximal normalized EMG(CON) both pre- and post-training. EMG(CON) for Grp WS was near maximal only post-training. While RFD was unchanged following training (p > 0.05), MVC and training-specific strength increased (p < 0.05) in both groups. We believe the higher EMG(ECC) activity noted with FW exercise compared to standard weight lifting could be attributed to its unique iso-inertial loading features. Hence, the resulting greater mechanical stress may explain the robust muscle hypertrophy reported earlier in response to flywheel resistance training.[Abstract] [Full Text] [Related] [New Search]