These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Author: Lee MH, Hong KS, Malhotra S, Park JH, Hwang EC, Choi HK, Kim YS, Tao W, Lee SW. Journal: Appl Microbiol Biotechnol; 2010 Nov; 88(5):1125-34. PubMed ID: 20683720. Abstract: Soil metagenome constitutes a reservoir for discovering novel enzymes from the unculturable microbial diversity. From three plant rhizosphere metagenomic libraries comprising a total of 142,900 members of recombinant plasmids, we obtained 14 recombinant fosmids that exhibited lipolytic activity. A selected recombinant plasmid, pFLP-2, which showed maximum lipolytic activity, was further analyzed. DNA sequence analysis of the subclone in pUC119, pELP-2, revealed an open reading frame of 1,191 bp encoding a 397-amino-acid protein. Purified EstD2 exhibited maximum enzymatic activity towards p-nitrophenyl butyrate, indicating that it is an esterase. Purified EstD2 showed optimal activity at 35 °C and at pH 8.0. The K(m) and K(cat) values were determined to be 79.4 μM and 120.5/s, respectively. The esterase exhibited an increase in enzymatic activity in the presence of 15% butanol and 15% methanol. Phylogenetic analysis revealed that the lipolytic protein EstD2 may be a member of a novel family of lipolytic enzymes. Several hypothetical protein homologs of EstD2 were found in the database. A hypothetical protein from Phenylobacterium zucineum HLK1, a close homolog of EstD2, displayed lipolytic activity when the corresponding gene was expressed in Escherichia coli. Our results suggest that the other hypothetical protein homologs of EstD2 might also be members of this novel family.[Abstract] [Full Text] [Related] [New Search]