These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Murine vasa recta pericyte chloride conductance is controlled by calcium, depolarization, and kinase activity.
    Author: Lin H, Pallone TL, Cao C.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1317-25. PubMed ID: 20686172.
    Abstract:
    We used the whole cell patch-clamp technique to investigate the regulation of descending vasa recta (DVR) pericyte Ca(2+)-dependent Cl(-) currents (CaCC) by cytoplasmic Ca(2+) concentration ([Ca](CYT)), voltage, and kinase activity. Murine CaCC increased with voltage and electrode Ca(2+) concentration. The current saturated at [Ca](CYT) of ∼1,000 nM and exhibited an EC(50) for Ca(2+) of ∼500 nM, independent of depolarization potential. Activation time constants were between 100 and 200 ms, independent of electrode Ca(2+). Repolarization-related tail currents elicited by stepping from +100 mV to varying test potentials exhibited deactivation time constants of 50-200 ms that increased with voltage when electrode [Ca](CYT) was 1,000 nM. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7, 30 μM) blocked CaCC. The myosin light chain kinase blockers 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7, 1-50 μM) and 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-9, 10 μM) were similarly effective. Resting pericytes were hyperpolarized by ML-7. Pericytes exposed to ANG II (10 nM) depolarized from a baseline of -50 ± 6 to -29 ± 3 mV and were repolarized to -63 ± 7 mV by exposure to 50 μM ML-7. The Ca(2+)/calmodulin-dependent kinase inhibitor KN-93 reduced pericyte CaCC only when it was present in the electrode and extracellular buffer from the time of membrane break-in. We conclude that murine DVR pericytes are modulated by [Ca](CYT), membrane potential, and phosphorylation events, suggesting that Ca(2+)-dependent Cl(-) conductance may be a target for regulation of vasoactivity and medullary blood flow in vivo.
    [Abstract] [Full Text] [Related] [New Search]