These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase.
    Author: van der Kamp MW, Zurek J, Manby FR, Harvey JN, Mulholland AJ.
    Journal: J Phys Chem B; 2010 Sep 02; 114(34):11303-14. PubMed ID: 20690673.
    Abstract:
    Combined quantum mechanics/molecular mechanics (QM/MM) calculations with high levels of correlated ab initio theory can now provide benchmarks for enzyme-catalyzed reactions. Here, we use such methods to test various QM/MM methods and the sensitivity of the results to details of the models for an important enzyme reaction, proton abstraction from acetyl-coenzyme A in citrate synthase. We calculate multiple QM/MM potential energy surfaces up to the local coupled cluster theory (LCCSD(T0)) level, with structures optimized at hybrid density functional theory and Hartree-Fock levels. The influence of QM methods, basis sets, and QM region size is shown to be significant. Correlated ab initio QM/MM calculations give barriers in agreement with experiment for formation of the acetyl-CoA enolate intermediate. In contrast, B3LYP fails to identify the enolate as an intermediate, whereas BH&HLYP does. The results indicate that QM/MM methods and setup should be tested, ideally using high-level calculations, to draw reliable mechanistic conclusions.
    [Abstract] [Full Text] [Related] [New Search]